Sandvik Coromant launches the Graphene Challenge competition for individuals

13 April 2016
Sandvik Coromant has launched a global competition for individuals to submit ideas for objects made from graphene that would revolutionize the modern household in a sustainable way. The development of new materials will have a much more crucial role in the future. Resource scarcity will demand innovative and out-of-the-box thinking in the field of applied material science.

Heading for the graphene revolution

Graphene was discovered almost accidentally when professors Andre Geim and Kostya Novoselov at the University of Manchester in England experimented with pencils and sticky tape in 2004. In 2010, Geim and Novoselov won the Nobel Prize in physics for their graphene research, and the European Union subsequently committed 1 billion euros to fund the Graphene Flagship, a research initiative aimed at speeding up the development of commercial applications. Potential areas of application range from water purification and energy storage to household goods, computers and other electronics. Meanwhile, although graphene-related patents are increasing by the thousands, widespread industrial adoption of graphene is limited by the expense of producing it – but that may be about to change. Researchers at the University of Glasgow have found a way to produce large sheets of graphene at a cost some 100 times cheaper than the previous production method.

Synthetic skin, capable of providing sensory feedback to people with limb prostheses, is one of the many possibilities that could grow out of this development. “Graphene could help provide an ultraflexible, conductive surface that could provide people with prosthetics capable of providing sensation in a way that is impossible for even the most advanced prosthetics today,” says Dr. Ravinder Dahiya, who led the research team at the University of Glasgow.

The death of metals?

Metals have dominated industry, defining entire periods of human history. Such long-term use has created a wealth of information and expertise, but scientists and researchers continue to work to extend the boundaries of these materials. Nanomaterials figure prominently in this research, enhancing metals and opening up new application areas. Developments in metal matrix nanocomposites – composites that partially consist of carbon nanotubes or nanoparticles – could usher in a new era of weight reduction in the aerospace industries, with added strength and stiffness.

 

If it’s broken, let it fix itself

Nanocomposite research is opening up the possibility of materials that fix themselves, much the way the human body heals itself. Researchers at the Beckman Institute’s Autonomous Materials Systems Group at the University of Illinois in the United States are working on fiber-composite materials with self-healing properties that involve the integration of healing agents that are released to mix and polymerize when a defect is detected.

“Materials that heal themselves are coming,” says material scientist Mark Miodownik. For now, what’s technically possible isn’t close to being reasonable economically, but the possibility of fixing anything on the fly, from airplane wings to bike frames to car parts crucial to the safety of vehicle and passengers, is on the horizon. And it will have massive impact on product development, life cycle and sustainability. Researchers are even working on materials that will allow a roadway to repair itself instead of waiting for an overworked, understaffed maintenance crew.

 

Outperforming Nature

For thousands of years, material science moved forward through a series of accidental discoveries of materials that existed in nature. Today researchers are looking beyond what’s in the natural world, combining multiple conventional materials or parts of materials and focusing on the inherent structure or pattern, to create properties that do not exist in nature – or at least haven’t been discovered thus far.

One such development is an arrangement of ridges formulated to resemble a shark’s skin. The micropattern, named Sharklet, protects against the harboring and transmission of bacteria and is being developed for use in hospital and health-care settings.

Another materials development involves invisibility. Physicists in several countries are working on metamaterials that hold the promise of rendering objects invisible by cloaking them with a material that can bend the electromagnetic radiation, such as light, around an object, creating the illusion that it isn’t really there.

 

Sustainability as a key driver

Material science and the development of new materials, as well as improvement of existing ones, look likely to play a crucial role in such areas as resource scarcity and sustainability. New materials – for example, light-absorbing building materials – could help counter global warming.

We seem to be on the verge of a new age, one that is characterized not only by digitalization and the Internet of Things but also, importantly, by new materials – materials that can make our future easier, safer and more sustainable. The sky really is the limit.


Start of challenge:April 7, 2016, 8:00 AM GMT
End of challenge:May 26, 2016, 5:00 PM GMT

Read more about the challenge and enter now!






Comments

To like this you need to register.
To do this, enter your name and email address.
Name:
Surname:
E-mail:
Sex:
If you are already registered
please enter your details here
To leave comments you need to register.
To do this, enter your name and email address.
Name:
Surname:
E-mail:
Sex:
If you are already registered
please enter your details here
We welcome comments that advance the story through relevant opinion and data. If you see a comment that you believe is irrelevant or inappropriate, you can flag it to our editors by using the report abuse links. Views expressed in the comments do not represent those of deMetallo. For more information on our comment policy, see: http://www.demetallo.com/legal/comment_policy/

Copyright © 2000-2017 United Information Systems, LLC. All rights reserved.

Republication of content is prohibited without the prior written consent of deMetallo.

Back to top